Debian ställer inga maskinvarukrav utöver kraven ställda för Linux- eller kFreeBSD-kärnan och GNU:s verktyg. Därför kan alla arkitekturer eller plattformar till vilka Linuxkärnan, libc, gcc och så vidare, blivit porterade, och för vilken en portering till Debian finns, köra Debian. Referera till ports-sidorna på https://www.debian.org/ports/arm/ för mera detaljer om 32-bit hard-float ARMv7-arkitektursystem som har blivit testade med Debian GNU/Linux.
Hellre än att försöka att beskriva alla de olika maskinvarukonfigurationerna som finns stöd för i 32-bit hard-float ARMv7 innehåller det här avsnittet allmän information och pekar till källor för ytterligare information.
Debian GNU/Linux 12 har stöd för 9 större arkitekturer och ett flertal variationer av varje arkitektur kända som ”varianter”.
Arkitektur | Debian-beteckning | Underarkitektur | Variant |
---|---|---|---|
AMD64 & Intel 64 | amd64 | ||
Intel x86-baserad | i386 | standard x86-maskiner | standard |
Endast Xen PV-domäner | xen | ||
ARM | armel | Marvell Kirkwood och Orion | marvell |
ARM med hårdvara FPU | armhf | multiplatform | armmp |
64bit ARM | arm64 | ||
64bit MIPS (little-endian) | mips64el | MIPS Malta | 5kc-malta |
Cavium Octeon | octeon | ||
Loongson 3 | loongson-3 | ||
32bit MIPS (little-endian) | mipsel | MIPS Malta | 4kc-malta |
Cavium Octeon | octeon | ||
Loongson 3 | loongson-3 | ||
Power Systems | ppc64el | IBM POWER8 eller nyare maskiner | |
64bit IBM S/390 | s390x | IPL från VM-läsare och DASD | generisk |
Det här dokumentet täcker in installationen för 32-bit hard-float ARMv7--arkitekturen med Linux-kärnan. Om du letar efter information om någon av de andra arkitekturerna som Debian stöder kan du se på sidorna för Debian-porteringar.
The ARM architecture has evolved over time and modern ARM processors provide features which are not available in older models. Debian therefore provides three ARM ports to give the best support for a very wide range of different machines:
Debian/armel riktar sig mot äldre 32-bitars ARM-processorer utan stöd för en hardware floating point unit (FPU),
Debian/armhf fungerar endast på nyare 32-bitars ARM-processorer som implementerar åtminstone ARMv7-arkitekturen med version 3 av ARM-vektorn floating point-specifikation (VFPv3). Den använder de utökade funktionerna och prestandaförbättringarna som finns tillgängliga på dessa modeller.
Debian/arm64 fungerar på 64-bitars ARM processorer som åtminstone implementerar ARMv8 arkitekturen.
Technically, all currently available ARM CPUs can be run in either endian mode (big or little), but in practice the vast majority use little-endian mode. All of Debian/arm64, Debian/armhf and Debian/armel support only little-endian systems.
ARM-system är mycket mer heterogena än de som bygger på den i386/amd64-baserade PC-arkitekturen, så supportsituationen kan vara mycket mer komplicerad.
The ARM architecture is used mainly in so-called ”system-on-chip” (SoC) designs. These SoCs are designed by many different companies with vastly varying hardware components even for the very basic functionality required to bring the system up. System firmware interfaces have been increasingly standardised over time, but especially on older hardware firmware/boot interfaces vary a great deal, so on these systems the Linux kernel has to take care of many system-specific low-level issues which would be handled by the mainboard's BIOS/UEFI in the PC world.
At the beginning of the ARM support in the Linux kernel, the hardware variety resulted in the requirement of having a separate kernel for each ARM system in contrast to the ”one-fits-all” kernel for PC systems. As this approach does not scale to a large number of different systems, work was done to allow booting with a single ARM kernel that can run on different ARM systems. Support for newer ARM systems is now implemented in a way that allows the use of such a multiplatform kernel, but for several older systems a separate specific kernel is still required. Because of this, the standard Debian distribution only supports installation on a selected number of such older ARM systems, alongside the newer systems which are supported by the ARM multiplatform kernels (called ”armmp”) in Debian/armhf.
Följande system är kända för att fungera med Debian/armhf genom att använda multiplatform (armmp): kärnan:
IMX53QSB är en utvecklingsbräda baserad på i.MX53 SoC.
Versatile Express är en utvecklingskortserie från ARM som består av en baseboard som kan utrustas med olika CPU-dotterkort.
The armmp kernel supports several development boards and embedded systems based on the Allwinner A10 (architecture codename ”sun4i”), A10s/A13 (architecture codename ”sun5i”), A20 (architecture codename ”sun7i”), A31/A31s (architecture codename ”sun6i”) and A23/A33 (part of the ”sun8i” family) SoCs. Full installer support (including provision of ready-made SD card images with the installer) is currently available for the following sunXi-based systems:
Cubietech Cubieboard 1 + 2 / Cubietruck
LeMaker Banana Pi och Banana Pro
LinkSprite pcDuino och pcDuino3
Olimex A10-Olinuxino-LIME / A20-Olinuxino-LIME / A20-Olinuxino-LIME2 / A20-Olinuxino Micro / A20-SOM-EVB
Xunlong OrangePi Plus
System support for Allwinner sunXi-based devices is limited to drivers and device-tree information available in the mainline Linux kernel. Vendor-specific kernel trees (such as the Allwinner SDK kernels) and the android-derived linux-sunxi.org kernel 3.4 series are not supported by Debian.
The mainline Linux kernel generally supports serial console, ethernet, SATA, USB and MMC/SD-cards on Allwinner A10, A10s/A13, A20, A23/A33 and A31/A31s SoCs. The level of support for local display (HDMI/VGA/LCD) and audio hardware varies between individual systems. For most systems, the kernel doesn't have native graphics drivers but instead uses the ”simplefb” infrastructure in which the bootloader initializes the display and the kernel just re-uses the pre-initialized framebuffer. This generally works reasonably well, although it results in certain limitations (the display resolution cannot be changed on the fly and display powermanagement is not possible).
Onboard flash memory intended to be used as a mass storage device generally exists in two basic variants on sunXi-based systems: raw NAND flash and eMMC flash. Most older sunXi-based boards with onboard flash storage use raw NAND flash for which support is not generally available in the mainline kernel and therefore also not in Debian. A number of newer systems use eMMC flash instead of raw NAND flash. An eMMC flash chip basically appears as a fast, non-removable SD card and is supported in the same way as a regular SD card.
The installer includes basic support for a number of sunXi-based systems not listed above, but it is largely untested on those systems as the Debian project doesn't have access to the corresponding hardware. No pre-built SD card images with the installer are provided for those systems. Development boards with such limited support include:
Olimex A10s-Olinuxino Micro / A13-Olinuxino / A13-Olinuxino Micro
Sinovoip BPI-M2 (A31s-baserad)
Xunlong Orange Pi (A20-baserad) / Orange Pi Mini (A20-baserad)
In addition to the SoCs and systems listed above, the installer has very limited support for the Allwinner H3 SoC and a number of boards based on it. Mainline kernel support for the H3 is still largely work in progress at the time of the Debian 9 release freeze, so the installer only supports serial console, MMC/SD and the USB host controller on H3-based systems. There is no driver for the on-board ethernet port of the H3 yet, so networking is only possible with a USB ethernet adaptor or a USB wifi dongle. Systems based on the H3 for which such very basic installer support is available include:
FriendlyARM NanoPi NEO
Xunlong Orange Pi Lite / Orange Pi One / Orange Pi PC / Orange Pi PC Plus / Orange Pi Plus / Orange Pi Plus 2E / Orange Pi 2
NVIDIA Jetson TK1 är ett utvecklarkort baserat på Tegra K1-chipet (även känt som Tegra 124). Tegra K1 har en fyrkärnig 32-bitars ARM Cortex-A15 CPU och Kepler GPU (GK20A) med 192 CUDA-kärnor. Andra system baserade på Tegra 124 kan också fungera.
Seagate Personal Cloud och Seagate NAS är NAS-enheter baserade på Marvells Armada 370-plattform. Debian stöder Personal Cloud (SRN21C), Personal Cloud 2-Bay (SRN22C), Seagate NAS 2-Bay (SRPD20) och Seagate NAS 4-Bay (SRPD40).
The Cubox-i series is a set of small, cubical-shaped systems based on the Freescale i.MX6 SoC family. System support for the Cubox-i series is limited to drivers and device-tree information available in the mainline Linux kernel; the Freescale 3.0 kernel series for the Cubox-i is not supported by Debian. Available drivers in the mainline kernel include serial console, ethernet, USB, MMC/SD-card and display support over HDMI (console and X11). In addition to that, the eSATA port on the Cubox-i4Pro is supported.
The Wandboard Quad, Dual and Solo are development boards based on the Freescale i.MX6 Quad SoC. System support is limited to drivers and device-tree information available in the mainline Linux kernel; the wandboard-specific 3.0 and 3.10 kernel series from wandboard.org are not supported by Debian. The mainline kernel includes driver support for serial console, display via HDMI (console and X11), ethernet, USB, MMC/SD, SATA (Quad only) and analog audio. Support for the other audio options (S/PDIF, HDMI-Audio) and for the onboard WLAN/Bluetooth module is untested or not available in Debian 9.
Generally, the ARM multiplatform support in the Linux kernel allows running debian-installer
on armhf systems not explicitly listed above, as long as the kernel used by debian-installer
has support for the target system's components and a device-tree file for the target is available. In these cases, the installer can usually provide a working installation, but it may not be able to automatically make the system bootable. Doing that in many cases requires device-specific information.
When using debian-installer
on such systems, you may have to manually make the system bootable at the end of the installation, e.g. by running the required commands in a shell started from within debian-installer
.
Multiprocessor support — also called ”symmetric multiprocessing” or SMP — is available for this architecture. The standard Debian 12 kernel image has been compiled with SMP-alternatives support. This means that the kernel will detect the number of processors (or processor cores) and will automatically deactivate SMP on uniprocessor systems.
Having multiple processors in a computer was originally only an issue for high-end server systems but has become common in recent years nearly everywhere with the introduction of so called ”multi-core” processors. These contain two or more processor units, called ”cores”, in one physical chip.
Debian's support for graphical interfaces is determined by the underlying support found in X.Org's X11 system, and the kernel. Basic framebuffer graphics is provided by the kernel, whilst desktop environments use X11. Whether advanced graphics card features such as 3D-hardware acceleration or hardware-accelerated video are available, depends on the actual graphics hardware used in the system and in some cases on the installation of additional ”firmware” blobs (see Avsnitt 2.2, ”Enheter som kräver fast programvara”).
Nearly all ARM machines have the graphics hardware built-in, rather than being on a plug-in card. Some machines do have expansion slots which will take graphics cards, but that is a rarity. Hardware designed to be headless with no graphics at all is quite common. Whilst basic framebuffer video provided by the kernel should work on all devices that have graphics, fast 3D graphics invariably needs binary drivers to work. The situation is changing quickly but at the time of the bookworm release free drivers for nouveau (Nvidia Tegra K1 SoC) and freedreno (Qualcomm Snapdragon SoCs) are available in the release. Other hardware needs non-free drivers from 3rd parties.
Detaljer om grafikhårdvaraoch pekenheter kan hittas på https://wiki.freedesktop.org/xorg/. Debian 12 skickar med X.Org version 7.7.
Nästan alla nätverkskort (NIC) som stöds av Linux-kärnan stöds även av installationssystemet; modulära drivrutiner ska vanligtvis läsas in automatiskt.
På 32-bit hard-float ARMv7 finns stöd för de flesta inbyggda Ethernet-enheter och moduler för ytterligare PCI- och USB-enheter tillhandahålls.